avrdude/src/fileio.c

1536 lines
38 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include "ac_cfg.h"
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>
#include <stdint.h>
#ifdef HAVE_LIBELF
#ifdef HAVE_LIBELF_H
#include <libelf.h>
#elif defined(HAVE_LIBELF_LIBELF_H)
#include <libelf/libelf.h>
#endif
#ifndef EM_AVR32
2022-01-07 10:31:16 +00:00
# define EM_AVR32 0x18ad /* unofficial */
#endif
#ifndef EM_AVR
# define EM_AVR 83 /* OpenBSD lacks it */
#endif
#endif
#include "avrdude.h"
#include "libavrdude.h"
#define IHEX_MAXDATA 256
#define MAX_LINE_LEN 256 /* max line length for ASCII format input files */
struct ihexrec {
unsigned char reclen;
unsigned int loadofs;
unsigned char rectyp;
unsigned char data[IHEX_MAXDATA];
unsigned char cksum;
};
static int b2ihex(const unsigned char *inbuf, int bufsize,
int recsize, int startaddr,
const char *outfile, FILE *outf, FILEFMT ffmt);
static int ihex2b(const char *infile, FILE *inf,
const AVRMEM *mem, int bufsize, unsigned int fileoffset,
FILEFMT ffmt);
static int b2srec(const unsigned char *inbuf, int bufsize,
int recsize, int startaddr,
const char *outfile, FILE *outf);
static int srec2b(const char *infile, FILE *inf,
const AVRMEM *mem, int bufsize, unsigned int fileoffset);
static int ihex_readrec(struct ihexrec *ihex, char *rec);
static int srec_readrec(struct ihexrec *srec, char *rec);
static int fileio_rbin(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size);
static int fileio_ihex(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size,
FILEFMT ffmt);
static int fileio_srec(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size);
#ifdef HAVE_LIBELF
static int elf2b(const char *infile, FILE *inf,
const AVRMEM *mem, const AVRPART *p,
int bufsize, unsigned int fileoffset);
static int fileio_elf(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem,
const AVRPART *p, int size);
#endif
static int fileio_num(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size,
FILEFMT fmt);
char * fileio_fmtstr(FILEFMT format)
{
switch (format) {
case FMT_AUTO : return "auto-detect"; break;
case FMT_SREC : return "Motorola S-Record"; break;
case FMT_IHEX : return "Intel Hex"; break;
case FMT_IHXC : return "Intel Hex with comments"; break;
case FMT_RBIN : return "raw binary"; break;
case FMT_ELF : return "ELF"; break;
default : return "invalid format"; break;
};
}
static int b2ihex(const unsigned char *inbuf, int bufsize,
int recsize, int startaddr,
const char *outfile, FILE *outf, FILEFMT ffmt)
{
const unsigned char *buf;
unsigned int nextaddr;
int n, nbytes, n_64k;
int i;
unsigned char cksum;
if (recsize > 255) {
pmsg_error("recsize=%d, must be < 256\n", recsize);
return -1;
}
n_64k = 0;
nextaddr = startaddr;
buf = inbuf;
nbytes = 0;
while (bufsize) {
n = recsize;
if (n > bufsize)
n = bufsize;
if ((nextaddr + n) > 0x10000)
n = 0x10000 - nextaddr;
if (n) {
cksum = 0;
fprintf(outf, ":%02X%04X00", n, nextaddr);
cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff);
for (i=0; i<n; i++) {
fprintf(outf, "%02X", buf[i]);
cksum += buf[i];
}
cksum = -cksum;
fprintf(outf, "%02X", cksum);
if(ffmt == FMT_IHXC) { /* Print comment with address and ASCII dump */
for(i=n; i<recsize; i++)
fprintf(outf, " ");
fprintf(outf, " // %05x> ", n_64k*0x10000 + nextaddr);
for (i=0; i<n; i++) {
unsigned char c = buf[i] & 0x7f;
/* Print space as _ so that line is one word */
putc(c == ' '? '_': c < ' ' || c == 0x7f? '.': c, outf);
}
}
putc('\n', outf);
nextaddr += n;
nbytes += n;
}
if (nextaddr >= 0x10000) {
int lo, hi;
/* output an extended address record */
n_64k++;
lo = n_64k & 0xff;
hi = (n_64k >> 8) & 0xff;
cksum = 0;
fprintf(outf, ":02000004%02X%02X", hi, lo);
cksum += 2 + 0 + 4 + hi + lo;
cksum = -cksum;
fprintf(outf, "%02X\n", cksum);
nextaddr = 0;
}
/* advance to next 'recsize' bytes */
buf += n;
bufsize -= n;
}
/*-----------------------------------------------------------------
add the end of record data line
-----------------------------------------------------------------*/
cksum = 0;
n = 0;
nextaddr = 0;
fprintf(outf, ":%02X%04X01", n, nextaddr);
cksum += n + ((nextaddr >> 8) & 0x0ff) + (nextaddr & 0x0ff) + 1;
cksum = -cksum;
fprintf(outf, "%02X\n", cksum);
return nbytes;
}
static int ihex_readrec(struct ihexrec * ihex, char * rec)
{
int i, j;
char buf[8];
int offset, len;
char * e;
unsigned char cksum;
int rc;
len = strlen(rec);
offset = 1;
cksum = 0;
/* reclen */
if (offset + 2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
ihex->reclen = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
/* load offset */
if (offset + 4 > len)
return -1;
for (i=0; i<4; i++)
buf[i] = rec[offset++];
buf[i] = 0;
ihex->loadofs = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
/* record type */
if (offset + 2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
ihex->rectyp = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
cksum = ihex->reclen + ((ihex->loadofs >> 8) & 0x0ff) +
(ihex->loadofs & 0x0ff) + ihex->rectyp;
/* data */
for (j=0; j<ihex->reclen; j++) {
if (offset + 2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
ihex->data[j] = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
cksum += ihex->data[j];
}
/* cksum */
if (offset + 2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
ihex->cksum = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
rc = -cksum & 0x000000ff;
return rc;
}
/*
* Intel Hex to binary buffer
*
2022-01-07 10:31:16 +00:00
* Given an open file 'inf' which contains Intel Hex formatted data,
* parse the file and lay it out within the memory buffer pointed to
2022-01-07 10:31:16 +00:00
* by outbuf. The size of outbuf, 'bufsize' is honored; if data would
* fall outsize of the memory buffer outbuf, an error is generated.
*
* Return the maximum memory address within 'outbuf' that was written.
* If an error occurs, return -1.
*
* */
static int ihex2b(const char *infile, FILE *inf,
const AVRMEM *mem, int bufsize, unsigned int fileoffset,
FILEFMT ffmt)
{
char buffer [ MAX_LINE_LEN ];
unsigned int nextaddr, baseaddr, maxaddr;
int i;
int lineno;
int len;
struct ihexrec ihex;
int rc;
lineno = 0;
baseaddr = 0;
maxaddr = 0;
nextaddr = 0;
while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) {
lineno++;
len = strlen(buffer);
if (buffer[len-1] == '\n')
buffer[--len] = 0;
if (buffer[0] != ':')
continue;
rc = ihex_readrec(&ihex, buffer);
if (rc < 0) {
pmsg_error("invalid record at line %d of %s\n", lineno, infile);
return -1;
}
else if (rc != ihex.cksum) {
if(ffmt == FMT_IHEX) {
pmsg_error("checksum mismatch at line %d of %s\n", lineno, infile);
imsg_error("checksum=0x%02x, computed checksum=0x%02x\n", ihex.cksum, rc);
return -1;
} else { /* Just warn with more permissive format FMT_IHXC */
pmsg_notice("checksum mismatch at line %d of %s\n", lineno, infile);
imsg_notice("checksum=0x%02x, computed checksum=0x%02x\n", ihex.cksum, rc);
}
}
switch (ihex.rectyp) {
case 0: /* data record */
if (fileoffset != 0 && baseaddr < fileoffset) {
pmsg_error("address 0x%04x out of range (below fileoffset 0x%x) at line %d of %s\n",
baseaddr, fileoffset, lineno, infile);
return -1;
}
nextaddr = ihex.loadofs + baseaddr - fileoffset;
if (nextaddr + ihex.reclen > (unsigned) bufsize) {
pmsg_error("address 0x%04x out of range at line %d of %s\n",
nextaddr+ihex.reclen, lineno, infile);
return -1;
}
for (i=0; i<ihex.reclen; i++) {
mem->buf[nextaddr+i] = ihex.data[i];
mem->tags[nextaddr+i] = TAG_ALLOCATED;
}
if (nextaddr+ihex.reclen > maxaddr)
maxaddr = nextaddr+ihex.reclen;
break;
case 1: /* end of file record */
return maxaddr;
break;
case 2: /* extended segment address record */
baseaddr = (ihex.data[0] << 8 | ihex.data[1]) << 4;
break;
case 3: /* start segment address record */
/* we don't do anything with the start address */
break;
case 4: /* extended linear address record */
baseaddr = (ihex.data[0] << 8 | ihex.data[1]) << 16;
break;
case 5: /* start linear address record */
/* we don't do anything with the start address */
break;
default:
pmsg_error("do not know how to deal with rectype=%d "
"at line %d of %s\n", ihex.rectyp, lineno, infile);
return -1;
break;
}
} /* while */
if (maxaddr == 0) {
pmsg_error("no valid record found in Intel Hex file %s\n", infile);
return -1;
}
else {
pmsg_warning("no end of file record found for Intel Hex file %s\n", infile);
return maxaddr;
}
}
static int b2srec(const unsigned char *inbuf, int bufsize,
int recsize, int startaddr,
const char *outfile, FILE *outf)
{
const unsigned char *buf;
unsigned int nextaddr;
int n, nbytes, addr_width;
unsigned char cksum;
char * tmpl=0;
if (recsize > 255) {
pmsg_error("recsize=%d, must be < 256\n", recsize);
return -1;
}
nextaddr = startaddr;
buf = inbuf;
nbytes = 0;
addr_width = 0;
while (bufsize) {
n = recsize;
if (n > bufsize)
n = bufsize;
if (n) {
cksum = 0;
if (nextaddr + n <= 0xffff) {
addr_width = 2;
tmpl="S1%02X%04X";
}
else if (nextaddr + n <= 0xffffff) {
addr_width = 3;
tmpl="S2%02X%06X";
}
else if (nextaddr + n <= 0xffffffff) {
addr_width = 4;
tmpl="S3%02X%08X";
}
else {
pmsg_error("address=%d, out of range\n", nextaddr);
return -1;
}
fprintf(outf, tmpl, n + addr_width + 1, nextaddr);
cksum += n + addr_width + 1;
for (int i=addr_width; i>0; i--)
cksum += (nextaddr >> (i-1) * 8) & 0xff;
for (unsigned i=nextaddr; i<nextaddr + n; i++) {
fprintf(outf, "%02X", buf[i]);
cksum += buf[i];
}
cksum = 0xff - cksum;
fprintf(outf, "%02X\n", cksum);
nextaddr += n;
nbytes +=n;
}
/* advance to next 'recsize' bytes */
bufsize -= n;
}
/*-----------------------------------------------------------------
add the end of record data line
-----------------------------------------------------------------*/
cksum = 0;
n = 0;
nextaddr = 0;
if (startaddr <= 0xffff) {
addr_width = 2;
tmpl="S9%02X%04X";
}
else if (startaddr <= 0xffffff) {
addr_width = 3;
tmpl="S9%02X%06X";
}
else if ((unsigned) startaddr <= 0xffffffff) {
addr_width = 4;
tmpl="S9%02X%08X";
}
fprintf(outf, tmpl, n + addr_width + 1, nextaddr);
cksum += n + addr_width +1;
for (int i=addr_width; i>0; i--)
cksum += (nextaddr >> (i - 1) * 8) & 0xff;
cksum = 0xff - cksum;
fprintf(outf, "%02X\n", cksum);
return nbytes;
}
static int srec_readrec(struct ihexrec * srec, char * rec)
{
int i, j;
char buf[8];
int offset, len, addr_width;
char * e;
unsigned char cksum;
int rc;
len = strlen(rec);
offset = 1;
cksum = 0;
addr_width = 2;
/* record type */
if (offset + 1 > len)
return -1;
srec->rectyp = rec[offset++];
if (srec->rectyp == 0x32 || srec->rectyp == 0x38)
addr_width = 3; /* S2,S8-record */
else if (srec->rectyp == 0x33 || srec->rectyp == 0x37)
addr_width = 4; /* S3,S7-record */
/* reclen */
if (offset + 2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
srec->reclen = strtoul(buf, &e, 16);
cksum += srec->reclen;
srec->reclen -= (addr_width+1);
if (e == buf || *e != 0)
return -1;
/* load offset */
if (offset + addr_width > len)
return -1;
for (i=0; i<addr_width*2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
srec->loadofs = strtoull(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
for (i=addr_width; i>0; i--)
cksum += (srec->loadofs >> (i - 1) * 8) & 0xff;
/* data */
for (j=0; j<srec->reclen; j++) {
if (offset+2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
srec->data[j] = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
cksum += srec->data[j];
}
/* cksum */
if (offset + 2 > len)
return -1;
for (i=0; i<2; i++)
buf[i] = rec[offset++];
buf[i] = 0;
srec->cksum = strtoul(buf, &e, 16);
if (e == buf || *e != 0)
return -1;
rc = 0xff - cksum;
return rc;
}
static int srec2b(const char *infile, FILE * inf,
const AVRMEM *mem, int bufsize, unsigned int fileoffset)
{
char buffer [ MAX_LINE_LEN ];
unsigned int nextaddr, maxaddr;
int i;
int lineno;
int len;
struct ihexrec srec;
int rc;
unsigned int reccount;
unsigned char datarec;
char * msg = "";
lineno = 0;
maxaddr = 0;
reccount = 0;
while (fgets((char *)buffer,MAX_LINE_LEN,inf)!=NULL) {
lineno++;
len = strlen(buffer);
if (buffer[len-1] == '\n')
buffer[--len] = 0;
if (buffer[0] != 0x53)
continue;
rc = srec_readrec(&srec, buffer);
if (rc < 0) {
pmsg_error("invalid record at line %d of %s\n", lineno, infile);
return -1;
}
else if (rc != srec.cksum) {
pmsg_error("checksum mismatch at line %d of %s\n", lineno, infile);
imsg_error("checksum=0x%02x, computed checksum=0x%02x\n", srec.cksum, rc);
return -1;
}
datarec=0;
switch (srec.rectyp) {
case 0x30: /* S0 - header record*/
/* skip */
break;
case 0x31: /* S1 - 16 bit address data record */
datarec=1;
msg="address 0x%04x out of range %sat line %d of %s\n";
break;
case 0x32: /* S2 - 24 bit address data record */
datarec=1;
msg="address 0x%06x out of range %sat line %d of %s\n";
break;
case 0x33: /* S3 - 32 bit address data record */
datarec=1;
msg="address 0x%08x out of range %sat line %d of %s\n";
break;
case 0x34: /* S4 - symbol record (LSI extension) */
pmsg_error("not supported record at line %d of %s\n", lineno, infile);
return -1;
case 0x35: /* S5 - count of S1,S2 and S3 records previously tx'd */
if (srec.loadofs != reccount){
pmsg_error("count of transmitted data records mismatch at line %d of %s\n", lineno, infile);
imsg_error("transmitted data records= %d, expected value= %d\n", reccount, srec.loadofs);
return -1;
}
break;
case 0x37: /* S7 Record - end record for 32 bit address data */
case 0x38: /* S8 Record - end record for 24 bit address data */
case 0x39: /* S9 Record - end record for 16 bit address data */
return maxaddr;
default:
pmsg_error("do not know how to deal with rectype S%d at line %d of %s\n",
srec.rectyp, lineno, infile);
return -1;
}
if (datarec == 1) {
nextaddr = srec.loadofs;
if (nextaddr < fileoffset) {
pmsg_error(msg, nextaddr, "(below fileoffset) ", lineno, infile);
return -1;
}
nextaddr -= fileoffset;
if (nextaddr + srec.reclen > (unsigned) bufsize) {
pmsg_error(msg, nextaddr+srec.reclen, "", lineno, infile);
return -1;
}
for (i=0; i<srec.reclen; i++) {
mem->buf[nextaddr+i] = srec.data[i];
mem->tags[nextaddr+i] = TAG_ALLOCATED;
}
if (nextaddr+srec.reclen > maxaddr)
maxaddr = nextaddr+srec.reclen;
reccount++;
}
}
pmsg_warning("no end of file record found for Motorola S-Records file %s\n", infile);
return maxaddr;
}
#ifdef HAVE_LIBELF
/*
* Determine whether the ELF file section pointed to by `sh' fits
* completely into the program header segment pointed to by `ph'.
*
* Assumes the section has been checked already before to actually
* contain data (SHF_ALLOC, SHT_PROGBITS, sh_size > 0).
*
* Sometimes, program header segments might be larger than the actual
* file sections. On VM architectures, this is used to allow mmapping
* the entire ELF file "as is" (including things like the program
* header table itself).
*/
static inline
int is_section_in_segment(Elf32_Shdr *sh, Elf32_Phdr *ph)
{
if (sh->sh_offset < ph->p_offset)
return 0;
if (sh->sh_offset + sh->sh_size > ph->p_offset + ph->p_filesz)
return 0;
return 1;
}
static int elf_mem_limits(const AVRMEM *mem, const AVRPART *p,
unsigned int *lowbound,
unsigned int *highbound,
unsigned int *fileoff)
{
int rv = 0;
if (p->prog_modes & PM_aWire) { // AVR32
if (strcmp(mem->desc, "flash") == 0) {
*lowbound = 0x80000000;
*highbound = 0xffffffff;
*fileoff = 0;
} else {
rv = -1;
}
} else {
if (strcmp(mem->desc, "flash") == 0 ||
strcmp(mem->desc, "boot") == 0 ||
strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0) {
*lowbound = 0;
*highbound = 0x7ffff; /* max 8 MiB */
*fileoff = 0;
} else if (strcmp(mem->desc, "eeprom") == 0) {
*lowbound = 0x810000;
*highbound = 0x81ffff; /* max 64 KiB */
*fileoff = 0;
} else if (strcmp(mem->desc, "lfuse") == 0) {
*lowbound = 0x820000;
*highbound = 0x82ffff;
*fileoff = 0;
} else if (strcmp(mem->desc, "hfuse") == 0) {
*lowbound = 0x820000;
*highbound = 0x82ffff;
*fileoff = 1;
} else if (strcmp(mem->desc, "efuse") == 0) {
*lowbound = 0x820000;
*highbound = 0x82ffff;
*fileoff = 2;
} else if (strncmp(mem->desc, "fuse", 4) == 0 &&
(mem->desc[4] >= '0' && mem->desc[4] <= '9')) {
/* Xmega fuseN */
*lowbound = 0x820000;
*highbound = 0x82ffff;
*fileoff = mem->desc[4] - '0';
} else if (strncmp(mem->desc, "lock", 4) == 0) {
*lowbound = 0x830000;
*highbound = 0x83ffff;
*fileoff = 0;
} else {
rv = -1;
}
}
return rv;
}
static int elf2b(const char *infile, FILE *inf,
const AVRMEM *mem, const AVRPART *p,
int bufsize, unsigned int fileoffset)
{
Elf *e;
int rv = 0, size = 0;
unsigned int low, high, foff;
if (elf_mem_limits(mem, p, &low, &high, &foff) != 0) {
pmsg_error("cannot handle %s memory region from ELF file\n", mem->desc);
return -1;
}
/*
* The Xmega memory regions for "boot", "application", and
* "apptable" are actually sub-regions of "flash". Refine the
* applicable limits. This allows to select only the appropriate
* sections out of an ELF file that contains section data for more
* than one sub-segment.
*/
if ((p->prog_modes & PM_PDI) != 0 &&
(strcmp(mem->desc, "boot") == 0 ||
strcmp(mem->desc, "application") == 0 ||
strcmp(mem->desc, "apptable") == 0)) {
AVRMEM *flashmem = avr_locate_mem(p, "flash");
if (flashmem == NULL) {
pmsg_error("no flash memory region found, cannot compute bounds of %s sub-region\n", mem->desc);
return -1;
}
/* The config file offsets are PDI offsets, rebase to 0. */
low = mem->offset - flashmem->offset;
high = low + mem->size - 1;
}
if (elf_version(EV_CURRENT) == EV_NONE) {
pmsg_error("ELF library initialization failed: %s\n", elf_errmsg(-1));
return -1;
}
if ((e = elf_begin(fileno(inf), ELF_C_READ, NULL)) == NULL) {
pmsg_error("cannot open %s as an ELF file: %s\n", infile, elf_errmsg(-1));
return -1;
}
if (elf_kind(e) != ELF_K_ELF) {
pmsg_error("cannot use %s as an ELF input file\n", infile);
goto done;
}
size_t i, isize;
const char *id = elf_getident(e, &isize);
if (id == NULL) {
pmsg_error("unable to read ident area of %s: %s\n", infile, elf_errmsg(-1));
goto done;
}
const char *endianname;
unsigned char endianess;
if (p->prog_modes & PM_aWire) { // AVR32
endianess = ELFDATA2MSB;
endianname = "little";
} else {
endianess = ELFDATA2LSB;
endianname = "big";
}
if (id[EI_CLASS] != ELFCLASS32 ||
id[EI_DATA] != endianess) {
pmsg_error("ELF file %s is not a 32-bit, %s-endian file that was expected\n",
infile, endianname);
goto done;
}
Elf32_Ehdr *eh;
if ((eh = elf32_getehdr(e)) == NULL) {
pmsg_error("unable to read ehdr of %s: %s\n", infile, elf_errmsg(-1));
goto done;
}
if (eh->e_type != ET_EXEC) {
pmsg_error("ELF file %s is not an executable file\n", infile);
goto done;
}
const char *mname;
uint16_t machine;
if (p->prog_modes & PM_aWire) {
machine = EM_AVR32;
mname = "AVR32";
} else {
machine = EM_AVR;
mname = "AVR";
}
if (eh->e_machine != machine) {
pmsg_error("ELF file %s is not for machine %s\n", infile, mname);
goto done;
}
if (eh->e_phnum == 0xffff /* PN_XNUM */) {
pmsg_error("ELF file %s uses extended program header numbers which are not expected\n", infile);
goto done;
}
Elf32_Phdr *ph;
if ((ph = elf32_getphdr(e)) == NULL) {
pmsg_error("unable to read program header table of %s: %s\n", infile, elf_errmsg(-1));
goto done;
}
size_t sndx;
if (elf_getshdrstrndx(e, &sndx) != 0) {
pmsg_error("unable to obtain section name string table: %s\n", elf_errmsg(-1));
sndx = 0;
}
/*
* Walk the program header table, pick up entries that are of type
* PT_LOAD, and have a non-zero p_filesz.
*/
for (i = 0; i < eh->e_phnum; i++) {
if (ph[i].p_type != PT_LOAD || ph[i].p_filesz == 0)
continue;
pmsg_notice2("considering PT_LOAD program header entry #%d:\n"
" p_vaddr 0x%x, p_paddr 0x%x, p_filesz %d\n", (int) i, ph[i].p_vaddr, ph[i].p_paddr, ph[i].p_filesz);
Elf_Scn *scn = NULL;
while ((scn = elf_nextscn(e, scn)) != NULL) {
size_t ndx = elf_ndxscn(scn);
Elf32_Shdr *sh = elf32_getshdr(scn);
if (sh == NULL) {
pmsg_error("unable to read section #%u header: %s\n", (unsigned int) ndx, elf_errmsg(-1));
rv = -1;
continue;
}
// Only interested in PROGBITS, ALLOC sections
if ((sh->sh_flags & SHF_ALLOC) == 0 || sh->sh_type != SHT_PROGBITS)
continue;
// Not interested in empty sections
if (sh->sh_size == 0)
continue;
// Section must belong to this segment
if (!is_section_in_segment(sh, ph+i))
continue;
const char *sname = sndx? elf_strptr(e, sndx, sh->sh_name): "*unknown*";
unsigned int lma = ph[i].p_paddr + sh->sh_offset - ph[i].p_offset;
pmsg_notice2("found section %s, LMA 0x%x, sh_size %u\n", sname, lma, sh->sh_size);
if(!(lma >= low && lma + sh->sh_size < high)) {
msg_notice2(" => skipping, inappropriate for %s memory region\n", mem->desc);
continue;
}
/*
* 1-byte sized memory regions are special: they are used for fuse
* bits, where multiple regions (in the config file) map to a
* single, larger region in the ELF file (e.g. "lfuse", "hfuse",
* and "efuse" all map to ".fuse"). We silently accept a larger
* ELF file region for these, and extract the actual byte to write
* from it, using the "foff" offset obtained above.
*/
if (mem->size != 1 && sh->sh_size > (unsigned) mem->size) {
pmsg_error("section %s of size %u does not fit into %s of size %d\n",
sname, sh->sh_size, mem->desc, mem->size);
rv = -1;
continue;
}
Elf_Data *d = NULL;
while ((d = elf_getdata(scn, d)) != NULL) {
msg_notice2(" Data block: d_buf %p, d_off 0x%x, d_size %ld\n",
d->d_buf, (unsigned int)d->d_off, (long) d->d_size);
if (mem->size == 1) {
if (d->d_off != 0) {
pmsg_error("unexpected data block at offset != 0\n");
rv = -1;
} else if (foff >= d->d_size) {
pmsg_error("ELF file section does not contain byte at offset %d\n", foff);
rv = -1;
} else {
msg_notice2(" Extracting one byte from file offset %d\n", foff);
mem->buf[0] = ((unsigned char *)d->d_buf)[foff];
mem->tags[0] = TAG_ALLOCATED;
size = 1;
}
} else {
int idx = lma-low + d->d_off;
int end = idx + d->d_size;
if(idx >= 0 && idx < mem->size && end >= 0 && end <= mem->size && end-idx >= 0) {
if (end > size)
size = end;
imsg_debug("writing %d bytes to mem offset 0x%x\n", end-idx, idx);
memcpy(mem->buf + idx, d->d_buf, end-idx);
memset(mem->tags + idx, TAG_ALLOCATED, end-idx);
} else {
pmsg_error("section %s [0x%04x, 0x%04x] does not fit into %s [0, 0x%04x]\n",
sname, idx, (int) (idx + d->d_size-1), mem->desc, mem->size-1);
rv = -1;
}
}
}
}
}
done:
(void)elf_end(e);
return rv<0? rv: size;
}
#endif /* HAVE_LIBELF */
/*
* Simple itoa() implementation. Caller needs to allocate enough
* space in buf. Only positive integers are handled.
*/
static char *itoa_simple(int n, char *buf, int base)
{
div_t q;
char c, *cp, *cp2;
cp = buf;
/*
* Divide by base until the number disappeared, but ensure at least
* one digit will be emitted.
*/
do {
q = div(n, base);
n = q.quot;
if (q.rem >= 10)
c = q.rem - 10 + 'a';
else
c = q.rem + '0';
*cp++ = c;
} while (q.quot != 0);
/* Terminate the string. */
*cp-- = '\0';
/* Now revert the result string. */
cp2 = buf;
while (cp > cp2) {
c = *cp;
*cp-- = *cp2;
*cp2++ = c;
}
return buf;
}
static int fileio_rbin(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size) {
int rc;
unsigned char *buf = mem->buf;
switch (fio->op) {
case FIO_READ:
rc = fread(buf, 1, size, f);
if (rc > 0)
memset(mem->tags, TAG_ALLOCATED, rc);
break;
case FIO_WRITE:
rc = fwrite(buf, 1, size, f);
break;
default:
pmsg_error("invalid fileio operation=%d\n", fio->op);
return -1;
}
if (rc < 0 || (fio->op == FIO_WRITE && rc < size)) {
pmsg_ext_error("%s error %s %s: %s; %s %d of the expected %d bytes\n",
fio->iodesc, fio->dir, filename, strerror(errno), fio->rw, rc, size);
return -1;
}
return rc;
}
static int fileio_imm(struct fioparms *fio,
const char *fname, FILE *f, const AVRMEM *mem, int size)
{
int rc = 0;
char *e, *p, *filename;
unsigned long b;
int loc;
filename = cfg_strdup(__func__, fname);
switch (fio->op) {
case FIO_READ:
loc = 0;
p = strtok(filename, " ,");
while (p != NULL && loc < size) {
b = strtoul(p, &e, 0);
/* check for binary formatted (0b10101001) strings */
b = (strncmp (p, "0b", 2))?
strtoul (p, &e, 0):
strtoul (p + 2, &e, 2);
if (*e != 0) {
pmsg_error("invalid byte value (%s) specified for immediate mode\n", p);
free(filename);
return -1;
}
mem->buf[loc] = b;
mem->tags[loc++] = TAG_ALLOCATED;
p = strtok(NULL, " ,");
rc = loc;
}
break;
case FIO_WRITE:
pmsg_error("invalid file format 'immediate' for output\n");
free(filename);
return -1;
default:
pmsg_error("invalid operation=%d\n", fio->op);
free(filename);
return -1;
}
if (rc < 0 || (fio->op == FIO_WRITE && rc < size)) {
pmsg_ext_error("%s error %s %s: %s; %s %d of the expected %d bytes\n",
fio->iodesc, fio->dir, filename, strerror(errno), fio->rw, rc, size);
free(filename);
return -1;
}
free(filename);
return rc;
}
static int fileio_ihex(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size,
FILEFMT ffmt)
{
int rc;
switch (fio->op) {
case FIO_WRITE:
rc = b2ihex(mem->buf, size, 32, fio->fileoffset, filename, f, ffmt);
if (rc < 0) {
return -1;
}
break;
case FIO_READ:
rc = ihex2b(filename, f, mem, size, fio->fileoffset, ffmt);
if (rc < 0)
return -1;
break;
default:
pmsg_error("invalid Intel Hex file I/O operation=%d\n", fio->op);
return -1;
break;
}
return rc;
}
static int fileio_srec(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size)
{
int rc;
switch (fio->op) {
case FIO_WRITE:
rc = b2srec(mem->buf, size, 32, fio->fileoffset, filename, f);
if (rc < 0) {
return -1;
}
break;
case FIO_READ:
rc = srec2b(filename, f, mem, size, fio->fileoffset);
if (rc < 0)
return -1;
break;
default:
pmsg_error("invalid Motorola S-Records file I/O operation=%d\n", fio->op);
return -1;
break;
}
return rc;
}
#ifdef HAVE_LIBELF
static int fileio_elf(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem,
const AVRPART *p, int size)
{
int rc;
switch (fio->op) {
case FIO_WRITE:
pmsg_error("write operation not supported for ELF\n");
return -1;
break;
case FIO_READ:
rc = elf2b(filename, f, mem, p, size, fio->fileoffset);
return rc;
default:
pmsg_error("invalid ELF file I/O operation=%d\n", fio->op);
return -1;
break;
}
}
#endif
static int fileio_num(struct fioparms *fio,
const char *filename, FILE *f, const AVRMEM *mem, int size,
FILEFMT fmt)
{
const char *prefix;
const char *name;
char cbuf[20];
int base, i, num;
switch (fmt) {
case FMT_HEX:
name = "hex";
prefix = "0x";
base = 16;
break;
default:
case FMT_DEC:
name = "decimal";
prefix = "";
base = 10;
break;
case FMT_OCT:
name = "octal";
prefix = "0";
base = 8;
break;
case FMT_BIN:
name = "binary";
prefix = "0b";
base = 2;
break;
}
switch (fio->op) {
case FIO_WRITE:
break;
case FIO_READ:
pmsg_error("invalid file format '%s' for input\n", name);
return -1;
default:
pmsg_error("invalid operation=%d\n", fio->op);
return -1;
}
for (i = 0; i < size; i++) {
if (i > 0) {
if (putc(',', f) == EOF)
goto writeerr;
}
num = (unsigned int)(mem->buf[i]);
/*
* For a base of 8 and a value < 8 to convert, don't write the
* prefix. The conversion will be indistinguishable from a
* decimal one then.
*/
if (prefix[0] != '\0' && !(base == 8 && num < 8)) {
if (fputs(prefix, f) == EOF)
goto writeerr;
}
itoa_simple(num, cbuf, base);
if (fputs(cbuf, f) == EOF)
goto writeerr;
}
if (putc('\n', f) == EOF)
goto writeerr;
return 0;
writeerr:
pmsg_ext_error("unable to write to %s: %s\n", filename, strerror(errno));
return -1;
}
int fileio_setparms(int op, struct fioparms *fp, const AVRPART *p, const AVRMEM * m) {
fp->op = op;
switch (op) {
case FIO_READ:
fp->mode = "r";
fp->iodesc = "input";
fp->dir = "from";
fp->rw = "read";
break;
case FIO_WRITE:
fp->mode = "w";
fp->iodesc = "output";
fp->dir = "to";
fp->rw = "wrote";
break;
default:
pmsg_error("invalid I/O operation %d\n", op);
return -1;
break;
}
/*
* AVR32 devices maintain their load offset within the file itself,
* but AVRDUDE maintains all memory images 0-based.
*/
fp->fileoffset = p->prog_modes & PM_aWire? m->offset: 0;
return 0;
}
int fileio_fmt_autodetect(const char * fname)
{
FILE * f;
unsigned char buf[MAX_LINE_LEN];
int i;
int len;
int found;
int first = 1;
#if !defined(WIN32)
f = fopen(fname, "r");
#else
f = fopen(fname, "rb");
#endif
if (f == NULL) {
pmsg_ext_error("unable to open %s: %s\n", fname, strerror(errno));
return -1;
}
while (fgets((char *)buf, MAX_LINE_LEN, f)!=NULL) {
/* check for ELF file */
if (first &&
(buf[0] == 0177 && buf[1] == 'E' &&
buf[2] == 'L' && buf[3] == 'F')) {
fclose(f);
return FMT_ELF;
}
buf[MAX_LINE_LEN-1] = 0;
len = strlen((char *)buf);
if (buf[len-1] == '\n')
buf[--len] = 0;
/* check for binary data */
found = 0;
for (i=0; i<len; i++) {
if (buf[i] > 127) {
found = 1;
break;
}
}
if (found) {
fclose(f);
return FMT_RBIN;
}
/* check for lines that look like intel hex */
if ((buf[0] == ':') && (len >= 11)) {
found = 1;
for (i=1; i<len; i++) {
if (!isxdigit(buf[1])) {
found = 0;
break;
}
}
if (found) {
fclose(f);
return FMT_IHEX;
}
}
/* check for lines that look like motorola s-record */
if ((buf[0] == 'S') && (len >= 10) && isdigit(buf[1])) {
found = 1;
for (i=1; i<len; i++) {
if (!isxdigit(buf[1])) {
found = 0;
break;
}
}
if (found) {
fclose(f);
return FMT_SREC;
}
}
first = 0;
}
fclose(f);
return -1;
}
int fileio(int oprwv, const char *filename, FILEFMT format,
const AVRPART *p, const char *memtype, int size)
{
int op, rc;
FILE * f;
const char *fname;
struct fioparms fio;
AVRMEM * mem;
int using_stdio;
op = oprwv == FIO_READ_FOR_VERIFY? FIO_READ: oprwv;
mem = avr_locate_mem(p, memtype);
if (mem == NULL) {
pmsg_error("memory type %s not configured for device %s\n", memtype, p->desc);
return -1;
}
rc = fileio_setparms(op, &fio, p, mem);
if (rc < 0)
return -1;
if (size < 0 || fio.op == FIO_READ)
size = mem->size;
if (fio.op == FIO_READ) {
/* 0xff fill unspecified memory */
memset(mem->buf, 0xff, size);
}
memset(mem->tags, 0, size);
using_stdio = 0;
if (strcmp(filename, "-")==0) {
if (fio.op == FIO_READ) {
fname = "<stdin>";
f = stdin;
}
else {
fname = "<stdout>";
f = stdout;
}
using_stdio = 1;
}
else {
fname = filename;
f = NULL;
}
if (format == FMT_AUTO) {
int format_detect;
if (using_stdio) {
pmsg_error("cannot auto detect file format when using stdin/out\n");
imsg_error("please specify a file format and try again\n");
return -1;
}
format_detect = fileio_fmt_autodetect(fname);
if (format_detect < 0) {
pmsg_error("cannot determine file format for %s, specify explicitly\n", fname);
return -1;
}
format = format_detect;
if (quell_progress < 2)
pmsg_notice("%s file %s auto detected as %s\n",
fio.iodesc, fname, fileio_fmtstr(format));
}
2022-01-07 12:15:55 +00:00
#if defined(WIN32)
/* Open Raw Binary and ELF format in binary mode on Windows.*/
if(format == FMT_RBIN || format == FMT_ELF)
{
if(fio.op == FIO_READ)
{
fio.mode = "rb";
}
if(fio.op == FIO_WRITE)
{
fio.mode = "wb";
}
}
#endif
if (format != FMT_IMM) {
if (!using_stdio) {
f = fopen(fname, fio.mode);
if (f == NULL) {
pmsg_ext_error("cannot open %s file %s: %s\n", fio.iodesc, fname, strerror(errno));
return -1;
}
}
}
switch (format) {
case FMT_IHEX:
case FMT_IHXC:
rc = fileio_ihex(&fio, fname, f, mem, size, format);
break;
case FMT_SREC:
rc = fileio_srec(&fio, fname, f, mem, size);
break;
case FMT_RBIN:
rc = fileio_rbin(&fio, fname, f, mem, size);
break;
case FMT_ELF:
#ifdef HAVE_LIBELF
rc = fileio_elf(&fio, fname, f, mem, p, size);
#else
pmsg_error("cannot handle ELF file %s, ELF file support was not compiled in\n", fname);
rc = -1;
#endif
break;
case FMT_IMM:
rc = fileio_imm(&fio, fname, f, mem, size);
break;
case FMT_HEX:
case FMT_DEC:
case FMT_OCT:
case FMT_BIN:
rc = fileio_num(&fio, fname, f, mem, size, format);
break;
default:
pmsg_error("invalid %s file format: %d\n", fio.iodesc, format);
return -1;
}
/* on reading flash other than for verify set the size to location of highest non-0xff byte */
if (rc > 0 && oprwv == FIO_READ) {
int hiaddr = avr_mem_hiaddr(mem);
if(hiaddr < rc) /* if trailing-0xff not disabled */
rc = hiaddr;
}
if (format != FMT_IMM && !using_stdio) {
fclose(f);
}
return rc;
}