avrdude/src/ft245r.c

1296 lines
36 KiB
C
Raw Normal View History

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org>
* some code:
* Copyright (C) 2011-2012 Roger E. Wolff <R.E.Wolff@BitWizard.nl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/* ft245r -- FT245R/FT232R Synchronous BitBangMode Programmer
default pin assign
FT232R / FT245R
miso = 1; # RxD / D1
sck = 0; # RTS / D0
mosi = 2; # TxD / D2
reset = 4; # DTR / D4
*/
/*
The ft232r is very similar, or even "identical" in the synchronous
bitbang mode that we use here.
This allows boards that have an ft232r for communication and an avr
as the processor to function as their own "ICSP". Boards that fit
this description include the Arduino Duemilanove, Arduino Diecimila,
Arduino NG (http://arduino.cc/it/main/boards) and the BitWizard
ftdi_atmega board (http://www.bitwizard.nl/wiki/index.php/FTDI_ATmega)
The Arduinos have to be patched to bring some of the control lines
to the ICSP header. The BitWizard board already has the neccessary
wiring on the PCB.
How to add the wires to an arduino is documented here:
http://www.geocities.jp/arduino_diecimila/bootloader/index_en.html
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdint.h>
#include <math.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "bitbang.h"
#include "ft245r.h"
#include "usbdevs.h"
#include "tpi.h"
#define TPIPCR_GT_0b 0x07
#define TPI_STOP_BITS 0x03
#if defined(HAVE_LIBFTDI1) && defined(HAVE_LIBUSB_1_0)
# if defined(HAVE_LIBUSB_1_0_LIBUSB_H)
# include <libusb-1.0/libusb.h>
# else
# include <libusb.h>
# endif
# include <libftdi1/ftdi.h>
2021-12-28 10:26:09 +00:00
#elif defined(HAVE_LIBFTDI)
#include <ftdi.h>
#else
2021-12-28 10:26:09 +00:00
#ifdef _MSC_VER
#pragma message("No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.")
#else
#warning No libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.
2021-12-28 10:26:09 +00:00
#endif
#define DO_NOT_BUILD_FT245R
#endif
#if defined(DO_NOT_BUILD_FT245R)
static int ft245r_noftdi_open (struct programmer_t *pgm, char * name) {
avrdude_message(MSG_INFO, "%s: error: no libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.\n",
progname);
return -1;
}
void ft245r_initpgm(PROGRAMMER * pgm) {
strcpy(pgm->type, "ftdi_syncbb");
pgm->open = ft245r_noftdi_open;
}
#else
#define FT245R_CYCLES 2
#define FT245R_FRAGMENT_SIZE 512
#define REQ_OUTSTANDINGS 10
//#define USE_INLINE_WRITE_PAGE
#define FT245R_DEBUG 0
/*
Some revisions of the FTDI chips mess up the timing in bitbang mode
unless the bitclock is set to the max (3MHz). For example, see:
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_120_FT232R%20Errata%20Technical%20Note.pdf
To work around this problem, set the macro below to 1 to always set
the bitclock to 3MHz and then issue the same byte repeatedly to get
the desired timing.
*/
#define FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND 0
static struct ftdi_context *handle;
#if FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND
static unsigned int baud_multiplier;
#else
# define baud_multiplier 1 // this let's C compiler optimize
#endif
static unsigned char ft245r_ddr;
static unsigned char ft245r_out;
#define FT245R_BUFSIZE 0x2000 // receive buffer size
#define FT245R_MIN_FIFO_SIZE 128 // min of FTDI RX/TX FIFO size
static struct {
int len; // # of bytes in transmit buffer
uint8_t buf[FT245R_MIN_FIFO_SIZE]; // transmit buffer
} tx;
static struct {
int discard; // # of bytes to discard during read
int pending; // # of bytes that have been written since last read
int len; // # of bytes in receive buffer
int wr; // write pointer
int rd; // read pointer
uint8_t buf[FT245R_BUFSIZE]; // receive ring buffer
} rx;
static int ft245r_cmd(PROGRAMMER * pgm, const unsigned char *cmd,
unsigned char *res);
static int ft245r_tpi_tx(PROGRAMMER * pgm, uint8_t byte);
static int ft245r_tpi_rx(PROGRAMMER * pgm, uint8_t *bytep);
// Discard all data from the receive buffer.
static void ft245r_rx_buf_purge(PROGRAMMER * pgm) {
rx.len = 0;
rx.rd = rx.wr = 0;
}
static void ft245r_rx_buf_put(PROGRAMMER * pgm, uint8_t byte) {
rx.len++;
rx.buf[rx.wr++] = byte;
if (rx.wr >= sizeof(rx.buf))
rx.wr = 0;
}
static uint8_t ft245r_rx_buf_get(PROGRAMMER * pgm) {
rx.len--;
uint8_t byte = rx.buf[rx.rd++];
if (rx.rd >= sizeof(rx.buf))
rx.rd = 0;
return byte;
}
/* Fill receive buffer with data from the FTDI receive FIFO. */
static int ft245r_fill(PROGRAMMER * pgm) {
uint8_t raw[FT245R_MIN_FIFO_SIZE];
int i, nread;
nread = ftdi_read_data(handle, raw, rx.pending);
if (nread < 0)
return -1;
rx.pending -= nread;
#if FT245R_DEBUG
avrdude_message(MSG_INFO, "%s: read %d bytes (pending=%d)\n",
__func__, nread, rx.pending);
#endif
for (i = 0; i < nread; ++i)
ft245r_rx_buf_put(pgm, raw[i]);
return nread;
}
static int ft245r_rx_buf_fill_and_get(PROGRAMMER* pgm)
{
while (rx.len == 0)
{
int result = ft245r_fill(pgm);
if (result < 0)
{
return result;
}
}
return ft245r_rx_buf_get(pgm);
}
/* Flush pending TX data to the FTDI send FIFO. */
static int ft245r_flush(PROGRAMMER * pgm) {
int rv, len = tx.len, avail;
uint8_t *src = tx.buf;
if (!len)
return 0;
while (len > 0) {
avail = FT245R_MIN_FIFO_SIZE - rx.pending;
if (avail <= 0) {
avail = ft245r_fill(pgm);
if (avail < 0) {
avrdude_message(MSG_INFO,
"%s: fill returned %d: %s\n",
__func__, avail, ftdi_get_error_string(handle));
return -1;
}
}
if (avail > len)
avail = len;
#if FT245R_DEBUG
avrdude_message(MSG_INFO, "%s: writing %d bytes\n", __func__, avail);
#endif
rv = ftdi_write_data(handle, src, avail);
if (rv != avail) {
avrdude_message(MSG_INFO,
"%s: write returned %d (expected %d): %s\n",
__func__, rv, avail, ftdi_get_error_string(handle));
return -1;
}
src += avail;
len -= avail;
rx.pending += avail;
}
tx.len = 0;
return 0;
}
static int ft245r_send2(PROGRAMMER * pgm, unsigned char * buf, size_t len,
bool discard_rx_data) {
int i, j;
for (i = 0; i < len; ++i) {
for (j = 0; j < baud_multiplier; ++j) {
if (discard_rx_data)
++rx.discard;
tx.buf[tx.len++] = buf[i];
if (tx.len >= FT245R_MIN_FIFO_SIZE)
ft245r_flush(pgm);
}
}
return 0;
}
static int ft245r_send(PROGRAMMER * pgm, unsigned char * buf, size_t len) {
return ft245r_send2(pgm, buf, len, false);
}
static int ft245r_send_and_discard(PROGRAMMER * pgm, unsigned char * buf,
size_t len) {
return ft245r_send2(pgm, buf, len, true);
}
static int ft245r_recv(PROGRAMMER * pgm, unsigned char * buf, size_t len) {
int i, j;
ft245r_flush(pgm);
ft245r_fill(pgm);
#if FT245R_DEBUG
avrdude_message(MSG_INFO, "%s: discarding %d, consuming %zu bytes\n",
__func__, rx.discard, len);
#endif
while (rx.discard > 0) {
int result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
--rx.discard;
}
for (i = 0; i < len; ++i)
{
int result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
buf[i] = (uint8_t)result;
for (j = 1; j < baud_multiplier; ++j)
{
result = ft245r_rx_buf_fill_and_get(pgm);
if (result < 0)
{
return result;
}
}
}
return 0;
}
static int ft245r_drain(PROGRAMMER * pgm, int display) {
int r;
// flush the buffer in the chip by changing the mode.....
r = ftdi_set_bitmode(handle, 0, BITMODE_RESET); // reset
if (r) return -1;
r = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronuse BitBang
if (r) return -1;
// drain our buffer.
ft245r_rx_buf_purge(pgm);
return 0;
}
/* Ensure any pending writes are sent to the FTDI chip before sleeping. */
static void ft245r_usleep(PROGRAMMER * pgm, useconds_t usec) {
ft245r_flush(pgm);
usleep(usec);
}
static int ft245r_chip_erase(PROGRAMMER * pgm, AVRPART * p) {
unsigned char cmd[4] = {0,0,0,0};
unsigned char res[4];
if (p->flags & AVRPART_HAS_TPI)
return avr_tpi_chip_erase(pgm, p);
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
avrdude_message(MSG_INFO, "chip erase instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
ft245r_usleep(pgm, p->chip_erase_delay);
return pgm->initialize(pgm, p);
}
static int ft245r_set_bitclock(PROGRAMMER * pgm) {
// libftdi1 multiplies bitbang baudrate by 4:
int r, rate = 0, ftdi_rate = 3000000 / 4;
/* bitclock is second. 1us = 0.000001. Max rate for ft232r 750000 */
if(pgm->bitclock) {
rate = (uint32_t)(1.0/pgm->bitclock);
} else if (pgm->baudrate) {
rate = pgm->baudrate;
} else {
rate = 150000; /* should work for all ftdi chips and the avr default internal clock of 1MHz */
}
#if FT245R_BITBANG_VARIABLE_PULSE_WIDTH_WORKAROUND
if (rate > 0 && rate < ftdi_rate)
baud_multiplier = round((ftdi_rate + rate - 1) / rate);
else
baud_multiplier = 1;
#else
ftdi_rate = rate;
#endif
avrdude_message(MSG_NOTICE2,
"%s: bitclk %d -> FTDI rate %d, baud multiplier %d\n",
__func__, rate, ftdi_rate, baud_multiplier);
r = ftdi_set_baudrate(handle, ftdi_rate);
if (r) {
avrdude_message(MSG_INFO, "Set baudrate (%d) failed with error '%s'.\n",
rate, ftdi_get_error_string (handle));
return -1;
}
return 0;
}
static int get_pin(PROGRAMMER *pgm, int pinname) {
uint8_t byte;
ft245r_flush(pgm);
if (ftdi_read_pins(handle, &byte) != 0)
return -1;
if (FT245R_DEBUG)
avrdude_message(MSG_INFO, "%s: in 0x%02x\n", __func__, byte);
return GET_BITS_0(byte, pgm, pinname) != 0;
}
static int set_pin(PROGRAMMER * pgm, int pinname, int val) {
unsigned char buf[1];
if (pgm->pin[pinname].mask[0] == 0) {
// ignore not defined pins (might be the led or vcc or buff if not needed)
return 0;
}
ft245r_out = SET_BITS_0(ft245r_out,pgm,pinname,val);
buf[0] = ft245r_out;
ft245r_send_and_discard(pgm, buf, 1);
return 0;
}
static int set_sck(PROGRAMMER * pgm, int value) {
return set_pin(pgm, PIN_AVR_SCK, value);
}
static int set_reset(PROGRAMMER * pgm, int value) {
return set_pin(pgm, PIN_AVR_RESET, value);
}
static int set_buff(PROGRAMMER * pgm, int value) {
return set_pin(pgm, PPI_AVR_BUFF, value);
}
static int set_vcc(PROGRAMMER * pgm, int value) {
return set_pin(pgm, PPI_AVR_VCC, value);
}
/* these functions are callbacks, which go into the
* PROGRAMMER data structure ("optional functions")
*/
static int set_led_pgm(struct programmer_t * pgm, int value) {
return set_pin(pgm, PIN_LED_PGM, value);
}
static int set_led_rdy(struct programmer_t * pgm, int value) {
return set_pin(pgm, PIN_LED_RDY, value);
}
static int set_led_err(struct programmer_t * pgm, int value) {
return set_pin(pgm, PIN_LED_ERR, value);
}
static int set_led_vfy(struct programmer_t * pgm, int value) {
return set_pin(pgm, PIN_LED_VFY, value);
}
/*
* apply power to the AVR processor
*/
static void ft245r_powerup(PROGRAMMER * pgm)
{
set_vcc(pgm, ON); /* power up */
ft245r_usleep(pgm, 100);
}
/*
* remove power from the AVR processor
*/
static void ft245r_powerdown(PROGRAMMER * pgm)
{
set_vcc(pgm, OFF); /* power down */
}
static void ft245r_disable(PROGRAMMER * pgm) {
set_buff(pgm, OFF);
}
static void ft245r_enable(PROGRAMMER * pgm) {
/*
* Prepare to start talking to the connected device - pull reset low
* first, delay a few milliseconds, then enable the buffer. This
* sequence allows the AVR to be reset before the buffer is enabled
* to avoid a short period of time where the AVR may be driving the
* programming lines at the same time the programmer tries to. Of
* course, if a buffer is being used, then the /RESET line from the
* programmer needs to be directly connected to the AVR /RESET line
* and not via the buffer chip.
*/
set_reset(pgm, OFF);
ft245r_usleep(pgm, 1);
set_buff(pgm, ON);
}
/*
* issue the 'program enable' command to the AVR device
*/
static int ft245r_program_enable(PROGRAMMER * pgm, AVRPART * p) {
unsigned char cmd[4] = {0,0,0,0};
unsigned char res[4];
int i;
if (p->flags & AVRPART_HAS_TPI)
return avr_tpi_program_enable(pgm, p, TPIPCR_GT_0b);
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
avrdude_message(MSG_INFO, "%s: AVR_OP_PGM_ENABLE command not defined for %s\n",
progname, p->desc);
fflush(stderr);
return -1;
}
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
for(i = 0; i < 4; i++) {
ft245r_cmd(pgm, cmd, res);
if (res[p->pollindex-1] == p->pollvalue) return 0;
if (FT245R_DEBUG) {
avrdude_message(MSG_NOTICE, "%s: Program enable command not successful. Retrying.\n",
progname);
fflush(stderr);
}
set_pin(pgm, PIN_AVR_RESET, ON);
ft245r_usleep(pgm, 20);
set_pin(pgm, PIN_AVR_RESET, OFF);
if (i == 3) {
ft245r_drain(pgm, 0);
ft245r_rx_buf_purge(pgm);
}
}
avrdude_message(MSG_INFO, "%s: Device is not responding to program enable. Check connection.\n",
progname);
fflush(stderr);
return -1;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int ft245r_initialize(PROGRAMMER * pgm, AVRPART * p) {
/* Apply power between VCC and GND while RESET and SCK are set to “0”. In some systems,
* the programmer can not guarantee that SCK is held low during power-up. In this
* case, RESET must be given a positive pulse of at least two CPU clock cycles duration
* after SCK has been set to 0.
*/
set_sck(pgm, OFF);
ft245r_powerup(pgm);
set_reset(pgm, OFF);
ft245r_usleep(pgm, 5000); // 5ms
set_reset(pgm, ON);
ft245r_usleep(pgm, 5000); // 5ms
set_reset(pgm, OFF);
/* Wait for at least 20 ms and enable serial programming by sending the Programming
* Enable serial instruction to pin MOSI.
*/
ft245r_usleep(pgm, 20000); // 20ms
if (p->flags & AVRPART_HAS_TPI) {
bool io_link_ok = true;
uint8_t byte;
int i;
/* Since there is a single TPIDATA line, MOSI and MISO must be
linked together through a 1kOhm resistor. Verify that
everything we send on MOSI gets mirrored back on MISO. */
set_pin(pgm, PIN_AVR_MOSI, 0);
if (get_pin(pgm, PIN_AVR_MISO) != 0) {
io_link_ok = false;
avrdude_message(MSG_INFO, "MOSI->MISO 0 failed\n");
if (!ovsigck)
return -1;
}
set_pin(pgm, PIN_AVR_MOSI, 1);
if (get_pin(pgm, PIN_AVR_MISO) != 1) {
io_link_ok = false;
avrdude_message(MSG_INFO, "MOSI->MISO 1 failed\n");
if (!ovsigck)
return -1;
}
if (io_link_ok)
avrdude_message(MSG_NOTICE2, "MOSI-MISO link present\n");
/* keep TPIDATA high for 16 clock cycles */
set_pin(pgm, PIN_AVR_MOSI, 1);
for (i = 0; i < 16; i++) {
set_sck(pgm, 1);
set_sck(pgm, 0);
}
/* remove extra guard timing bits */
ft245r_tpi_tx(pgm, TPI_CMD_SSTCS | TPI_REG_TPIPCR);
ft245r_tpi_tx(pgm, 0x7);
/* read TPI ident reg */
ft245r_tpi_tx(pgm, TPI_CMD_SLDCS | TPI_REG_TPIIR);
ft245r_tpi_rx(pgm, &byte);
if (byte != 0x80) {
avrdude_message(MSG_INFO, "TPIIR 0x%02x not correct\n", byte);
return -1;
}
}
return ft245r_program_enable(pgm, p);
}
static inline void add_bit(PROGRAMMER * pgm, unsigned char *buf, int *buf_pos,
uint8_t bit) {
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_MOSI, bit);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
buf[*buf_pos] = ft245r_out;
(*buf_pos)++;
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,1);
buf[*buf_pos] = ft245r_out;
(*buf_pos)++;
}
static inline int set_data(PROGRAMMER * pgm, unsigned char *buf, unsigned char data) {
int j;
int buf_pos = 0;
unsigned char bit = 0x80;
for (j=0; j<8; j++) {
add_bit(pgm, buf, &buf_pos, (data & bit) != 0);
bit >>= 1;
}
return buf_pos;
}
static inline unsigned char extract_data(PROGRAMMER * pgm, unsigned char *buf, int offset) {
int j;
int buf_pos = FT245R_CYCLES; /* MISO data is valid AFTER rising SCK edge,
i.e. in next clock cycle */
unsigned char bit = 0x80;
unsigned char r = 0;
buf += offset * (8 * FT245R_CYCLES);
for (j=0; j<8; j++) {
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_MISO)) {
r |= bit;
}
buf_pos += FT245R_CYCLES;
bit >>= 1;
}
return r;
}
/* to check data */
#if 0
static inline unsigned char extract_data_out(PROGRAMMER * pgm, unsigned char *buf, int offset) {
int j;
int buf_pos = 1;
unsigned char bit = 0x80;
unsigned char r = 0;
buf += offset * (8 * FT245R_CYCLES);
for (j=0; j<8; j++) {
if (GET_BITS_0(buf[buf_pos],pgm,PIN_AVR_MOSI)) {
r |= bit;
}
buf_pos += FT245R_CYCLES;
bit >>= 1;
}
return r;
}
#endif
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
static int ft245r_cmd(PROGRAMMER * pgm, const unsigned char *cmd,
unsigned char *res) {
int i,buf_pos;
unsigned char buf[128];
buf_pos = 0;
for (i=0; i<4; i++) {
buf_pos += set_data(pgm, buf+buf_pos, cmd[i]);
}
buf[buf_pos] = 0;
buf_pos++;
ft245r_send (pgm, buf, buf_pos);
ft245r_recv (pgm, buf, buf_pos);
res[0] = extract_data(pgm, buf, 0);
res[1] = extract_data(pgm, buf, 1);
res[2] = extract_data(pgm, buf, 2);
res[3] = extract_data(pgm, buf, 3);
return 0;
}
static inline uint8_t extract_tpi_data(PROGRAMMER * pgm, unsigned char *buf,
int *buf_pos) {
uint8_t bit = 0x1, byte = 0;
int j;
for (j = 0; j < 8; j++) {
(*buf_pos)++; // skip over falling clock edge
if (GET_BITS_0(buf[(*buf_pos)++], pgm, PIN_AVR_MISO))
byte |= bit;
bit <<= 1;
}
return byte;
}
static inline int set_tpi_data(PROGRAMMER * pgm, unsigned char *buf,
uint8_t byte) {
uint8_t bit = 0x1, parity = 0;
int j, buf_pos = 0;
// start bit:
add_bit(pgm, buf, &buf_pos, 0);
// 8 data bits:
for (j = 0; j < 8; j++) {
add_bit(pgm, buf, &buf_pos, (byte & bit) != 0);
parity ^= (byte & bit) != 0;
bit <<= 1;
}
// parity bit:
add_bit(pgm, buf, &buf_pos, parity);
// stop bits:
add_bit(pgm, buf, &buf_pos, 1);
add_bit(pgm, buf, &buf_pos, 1);
return buf_pos;
}
static int ft245r_tpi_tx(PROGRAMMER * pgm, uint8_t byte) {
uint8_t buf[128];
int len;
len = set_tpi_data(pgm, buf, byte);
ft245r_send_and_discard(pgm, buf, len);
return 0;
}
static int ft245r_tpi_rx(PROGRAMMER * pgm, uint8_t *bytep) {
uint8_t buf[128], bit, parity;
int i, buf_pos = 0, len = 0;
uint32_t res, m, byte;
/* Allow for up to 4 bits before we must see start bit; during
that time, we must keep the MOSI line high. */
for (i = 0; i < 2; ++i)
len += set_data(pgm, &buf[len], 0xff);
ft245r_send(pgm, buf, len);
ft245r_recv(pgm, buf, len);
res = (extract_tpi_data(pgm, buf, &buf_pos)
| ((uint32_t) extract_tpi_data(pgm, buf, &buf_pos) << 8));
/* Look for start bit: */
m = 0x1;
while (m & res)
m <<= 1;
if (m >= 0x10) {
avrdude_message(MSG_INFO, "%s: start bit missing (res=0x%04x)\n",
__func__, res);
return -1;
}
byte = parity = 0;
for (i = 0; i < 8; ++i) {
m <<= 1;
bit = (res & m) != 0;
parity ^= bit;
byte |= bit << i;
}
m <<= 1;
if (((res & m) != 0) != parity) {
avrdude_message(MSG_INFO, "%s: parity bit wrong\n", __func__);
return -1;
}
if (((res & (m << 1)) == 0) || ((res & (m << 2))) == 0) {
avrdude_message(MSG_INFO, "%s: stop bits wrong\n", __func__);
return -1;
}
*bytep = (uint8_t) byte;
return 0;
}
static int ft245r_cmd_tpi(PROGRAMMER * pgm, const unsigned char *cmd,
int cmd_len, unsigned char *res, int res_len) {
int i, ret = 0;
pgm->pgm_led(pgm, ON);
for (i = 0; i < cmd_len; ++i)
ft245r_tpi_tx(pgm, cmd[i]);
for (i = 0; i < res_len; ++i)
if ((ret = ft245r_tpi_rx(pgm, &res[i])) < 0)
break;
if (verbose >= 2) {
avrdude_message(MSG_NOTICE2, "%s: [ ", __func__);
for (i = 0; i < cmd_len; i++)
avrdude_message(MSG_NOTICE2, "%02X ", cmd[i]);
avrdude_message(MSG_NOTICE2, "] [ ");
for(i = 0; i < res_len; i++)
avrdude_message(MSG_NOTICE2, "%02X ", res[i]);
avrdude_message(MSG_NOTICE2, "]\n");
}
pgm->pgm_led(pgm, OFF);
return ret;
}
/* lower 8 pins are accepted, they might be also inverted */
static const struct pindef_t valid_pins = {{0xff},{0xff}} ;
static const struct pin_checklist_t pin_checklist[] = {
{ PIN_AVR_SCK, 1, &valid_pins},
{ PIN_AVR_MOSI, 1, &valid_pins},
{ PIN_AVR_MISO, 1, &valid_pins},
{ PIN_AVR_RESET,1, &valid_pins},
{ PPI_AVR_BUFF, 0, &valid_pins},
};
static int ft245r_open(PROGRAMMER * pgm, char * port) {
int rv;
int devnum = -1;
char device[9] = "";
rv = pins_check(pgm,pin_checklist,sizeof(pin_checklist)/sizeof(pin_checklist[0]), true);
if(rv) {
pgm->display(pgm, progbuf);
return rv;
}
strcpy(pgm->port, port);
// read device string cut after 8 chars (max. length of serial number)
if ((sscanf(port, "usb:%8s", device) != 1)) {
avrdude_message(MSG_NOTICE,
"%s: ft245r_open(): no device identifier in portname, using default\n",
progname);
pgm->usbsn[0] = 0;
devnum = 0;
} else {
if (strlen(device) == 8 ){ // serial number
if (verbose >= 2) {
avrdude_message(MSG_INFO,
"%s: ft245r_open(): serial number parsed as: "
"%s\n",
progname,
device);
}
// copy serial number to pgm struct
strcpy(pgm->usbsn, device);
// and use first device with matching serial (should be unique)
devnum = 0;
}
else if (strncmp("ft", device, 2) || strlen(device) <= 8) { // classic device number
char *startptr = device + 2;
char *endptr = NULL;
devnum = strtol(startptr,&endptr,10);
if ((startptr==endptr) || (*endptr != '\0')) {
devnum = -1;
}
avrdude_message(MSG_INFO,
"%s: ft245r_open(): device number parsed as: "
"%d\n",
progname,
devnum);
}
}
// if something went wrong before abort with helpful message
if (devnum < 0) {
avrdude_message(MSG_INFO, "%s: ft245r_open(): invalid portname '%s': use^ 'ft[0-9]+' or serial number\n",
progname,port);
return -1;
}
handle = malloc (sizeof (struct ftdi_context));
ftdi_init(handle);
LNODEID usbpid = lfirst(pgm->usbpid);
int pid;
if (usbpid) {
pid = *(int *)(ldata(usbpid));
if (lnext(usbpid))
avrdude_message(MSG_INFO, "%s: Warning: using PID 0x%04x, ignoring remaining PIDs in list\n",
progname, pid);
} else {
pid = USB_DEVICE_FT245;
}
rv = ftdi_usb_open_desc_index(handle,
pgm->usbvid?pgm->usbvid:USB_VENDOR_FTDI,
pid,
pgm->usbproduct[0]?pgm->usbproduct:NULL,
pgm->usbsn[0]?pgm->usbsn:NULL,
devnum);
if (rv) {
avrdude_message(MSG_INFO, "%s: can't open ftdi device: %s\n",
progname, ftdi_get_error_string(handle));
goto cleanup_no_usb;
}
ft245r_ddr =
pgm->pin[PIN_AVR_SCK].mask[0]
| pgm->pin[PIN_AVR_MOSI].mask[0]
| pgm->pin[PIN_AVR_RESET].mask[0]
| pgm->pin[PPI_AVR_BUFF].mask[0]
| pgm->pin[PPI_AVR_VCC].mask[0]
| pgm->pin[PIN_LED_ERR].mask[0]
| pgm->pin[PIN_LED_RDY].mask[0]
| pgm->pin[PIN_LED_PGM].mask[0]
| pgm->pin[PIN_LED_VFY].mask[0];
/* set initial values for outputs, no reset everything else is off */
ft245r_out = 0;
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_RESET,1);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_MOSI,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_BUFF,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PPI_AVR_VCC,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_ERR,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_RDY,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_PGM,0);
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_LED_VFY,0);
rv = ftdi_set_latency_timer(handle, 1);
if (rv) {
avrdude_message(MSG_INFO, "%s: unable to set latency timer to 1 (%s)\n",
progname, ftdi_get_error_string(handle));
goto cleanup;
}
rv = ftdi_set_bitmode(handle, ft245r_ddr, BITMODE_SYNCBB); // set Synchronous BitBang
if (rv) {
avrdude_message(MSG_INFO, "%s: Synchronous BitBangMode is not supported (%s)\n",
progname, ftdi_get_error_string(handle));
goto cleanup;
}
rv = ft245r_set_bitclock(pgm);
if (rv) {
goto cleanup;
}
/*
* drain any extraneous input
*/
ft245r_drain (pgm, 0);
ft245r_send_and_discard(pgm, &ft245r_out, 1);
return 0;
cleanup:
ftdi_usb_close(handle);
cleanup_no_usb:
ftdi_deinit (handle);
free(handle);
handle = NULL;
return -1;
}
static void ft245r_close(PROGRAMMER * pgm) {
if (handle) {
// I think the switch to BB mode and back flushes the buffer.
ftdi_set_bitmode(handle, 0, BITMODE_SYNCBB); // set Synchronous BitBang, all in puts
ftdi_set_bitmode(handle, 0, BITMODE_RESET); // disable Synchronous BitBang
ftdi_usb_close(handle);
ftdi_deinit (handle);
free(handle);
handle = NULL;
}
}
static void ft245r_display(PROGRAMMER * pgm, const char * p) {
avrdude_message(MSG_INFO, "%sPin assignment : 0..7 = DBUS0..7\n",p);/* , 8..11 = GPIO0..3\n",p);*/
pgm_display_generic_mask(pgm, p, SHOW_ALL_PINS);
}
static int ft245r_paged_write_gen(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int addr,
unsigned int n_bytes) {
unsigned long i, pa;
int rc;
for (i=0; i<n_bytes; i++, addr++) {
rc = avr_write_byte_default(pgm, p, m, addr, m->buf[addr]);
if (rc != 0) {
return -2;
}
if (m->paged) {
// Can this piece of code ever be activated?? Do AVRs exist that
// have paged non-flash memories? -- REW
// XXX Untested code below.
/*
* check to see if it is time to flush the page with a page
* write
*/
if (((addr % m->page_size) == m->page_size-1) || (i == n_bytes-1)) {
pa = addr - (addr % m->page_size);
rc = avr_write_page(pgm, p, m, pa);
if (rc != 0) {
return -2;
}
}
}
}
return i;
}
static struct ft245r_request {
int addr;
int bytes;
int n;
struct ft245r_request *next;
} *req_head,*req_tail,*req_pool;
static void put_request(int addr, int bytes, int n) {
struct ft245r_request *p;
if (req_pool) {
p = req_pool;
req_pool = p->next;
} else {
p = malloc(sizeof(struct ft245r_request));
if (!p) {
avrdude_message(MSG_INFO, "can't alloc memory\n");
exit(1);
}
}
memset(p, 0, sizeof(struct ft245r_request));
p->addr = addr;
p->bytes = bytes;
p->n = n;
if (req_tail) {
req_tail->next = p;
req_tail = p;
} else {
req_head = req_tail = p;
}
}
static int do_request(PROGRAMMER * pgm, AVRMEM *m) {
struct ft245r_request *p;
int addr, bytes, j, n;
unsigned char buf[FT245R_FRAGMENT_SIZE+1+128];
if (!req_head) return 0;
p = req_head;
req_head = p->next;
if (!req_head) req_tail = req_head;
addr = p->addr;
bytes = p->bytes;
n = p->n;
memset(p, 0, sizeof(struct ft245r_request));
p->next = req_pool;
req_pool = p;
ft245r_recv(pgm, buf, bytes);
for (j=0; j<n; j++) {
m->buf[addr++] = extract_data(pgm, buf , (j * 4 + 3));
}
return 1;
}
static int ft245r_paged_write_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int addr, int n_bytes) {
unsigned int i,j;
int addr_save,buf_pos,do_page_write,req_count;
unsigned char buf[FT245R_FRAGMENT_SIZE+1+128];
req_count = 0;
for (i=0; i<n_bytes; ) {
addr_save = addr;
buf_pos = 0;
do_page_write = 0;
for (j=0; j< FT245R_FRAGMENT_SIZE/8/FT245R_CYCLES/4; j++) {
buf_pos += set_data(pgm, buf+buf_pos, (addr & 1)?0x48:0x40 );
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 9) & 0xff );
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 1) & 0xff );
buf_pos += set_data(pgm, buf+buf_pos, m->buf[addr]);
addr ++;
i++;
if ( (m->paged) &&
(((i % m->page_size) == 0) || (i == n_bytes))) {
do_page_write = 1;
break;
}
}
#if defined(USE_INLINE_WRITE_PAGE)
if (do_page_write) {
int addr_wk = addr_save - (addr_save % m->page_size);
/* If this device has a "load extended address" command, issue it. */
if (m->op[AVR_OP_LOAD_EXT_ADDR]) {
unsigned char cmd[4];
OPCODE *lext = m->op[AVR_OP_LOAD_EXT_ADDR];
memset(cmd, 0, 4);
avr_set_bits(lext, cmd);
avr_set_addr(lext, cmd, addr_wk/2);
buf_pos += set_data(pgm, buf+buf_pos, cmd[0]);
buf_pos += set_data(pgm, buf+buf_pos, cmd[1]);
buf_pos += set_data(pgm, buf+buf_pos, cmd[2]);
buf_pos += set_data(pgm, buf+buf_pos, cmd[3]);
}
buf_pos += set_data(pgm, buf+buf_pos, 0x4C); /* Issue Page Write */
buf_pos += set_data(pgm, buf+buf_pos,(addr_wk >> 9) & 0xff);
buf_pos += set_data(pgm, buf+buf_pos,(addr_wk >> 1) & 0xff);
buf_pos += set_data(pgm, buf+buf_pos, 0);
}
#endif
if (i >= n_bytes) {
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0); // sck down
buf[buf_pos++] = ft245r_out;
}
else {
/* stretch sequence to allow correct readout, see extract_data() */
buf[buf_pos] = buf[buf_pos - 1];
buf_pos++;
}
ft245r_send(pgm, buf, buf_pos);
put_request(addr_save, buf_pos, 0);
//ft245r_sync(pgm);
#if 0
avrdude_message(MSG_INFO, "send addr 0x%04x bufsize %d [%02x %02x] page_write %d\n",
addr_save,buf_pos,
extract_data_out(pgm, buf , (0*4 + 3) ),
extract_data_out(pgm, buf , (1*4 + 3) ),
do_page_write);
#endif
req_count++;
if (req_count > REQ_OUTSTANDINGS)
do_request(pgm, m);
if (do_page_write) {
#if defined(USE_INLINE_WRITE_PAGE)
while (do_request(pgm, m))
;
ft245r_usleep(pgm, m->max_write_delay);
#else
int addr_wk = addr_save - (addr_save % m->page_size);
int rc;
while (do_request(pgm, m))
;
rc = avr_write_page(pgm, p, m, addr_wk);
if (rc != 0) {
return -2;
}
#endif
req_count = 0;
}
}
while (do_request(pgm, m))
;
return i;
}
static int ft245r_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int addr, unsigned int n_bytes) {
if (strcmp(m->desc, "flash") == 0) {
return ft245r_paged_write_flash(pgm, p, m, page_size, addr, n_bytes);
} else if (strcmp(m->desc, "eeprom") == 0) {
return ft245r_paged_write_gen(pgm, p, m, page_size, addr, n_bytes);
} else {
return -2;
}
}
static int ft245r_paged_load_gen(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int addr,
int n_bytes) {
unsigned char rbyte;
unsigned long i;
int rc;
for (i=0; i<n_bytes; i++) {
rc = avr_read_byte_default(pgm, p, m, i+addr, &rbyte);
if (rc != 0) {
return -2;
}
m->buf[i+addr] = rbyte;
}
return 0;
}
static int ft245r_paged_load_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int addr,
unsigned int n_bytes) {
unsigned long i,j,n;
int addr_save,buf_pos;
int req_count = 0;
unsigned char buf[FT245R_FRAGMENT_SIZE+1];
for (i=0; i<n_bytes; ) {
buf_pos = 0;
addr_save = addr;
for (j=0; j< FT245R_FRAGMENT_SIZE/8/FT245R_CYCLES/4; j++) {
if (i >= n_bytes) break;
buf_pos += set_data(pgm, buf+buf_pos, (addr & 1)?0x28:0x20 );
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 9) & 0xff );
buf_pos += set_data(pgm, buf+buf_pos, (addr >> 1) & 0xff );
buf_pos += set_data(pgm, buf+buf_pos, 0);
addr ++;
i++;
}
if (i >= n_bytes) {
ft245r_out = SET_BITS_0(ft245r_out,pgm,PIN_AVR_SCK,0); // sck down
buf[buf_pos++] = ft245r_out;
}
else {
/* stretch sequence to allow correct readout, see extract_data() */
buf[buf_pos] = buf[buf_pos - 1];
buf_pos++;
}
n = j;
ft245r_send(pgm, buf, buf_pos);
put_request(addr_save, buf_pos, n);
req_count++;
if (req_count > REQ_OUTSTANDINGS)
do_request(pgm, m);
}
while (do_request(pgm, m))
;
return 0;
}
static int ft245r_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size, unsigned int addr,
unsigned int n_bytes) {
if (strcmp(m->desc, "flash") == 0) {
return ft245r_paged_load_flash(pgm, p, m, page_size, addr, n_bytes);
} else if (strcmp(m->desc, "eeprom") == 0) {
return ft245r_paged_load_gen(pgm, p, m, page_size, addr, n_bytes);
} else {
return -2;
}
}
void ft245r_initpgm(PROGRAMMER * pgm) {
strcpy(pgm->type, "ftdi_syncbb");
/*
* mandatory functions
*/
pgm->initialize = ft245r_initialize;
pgm->display = ft245r_display;
pgm->enable = ft245r_enable;
pgm->disable = ft245r_disable;
pgm->program_enable = ft245r_program_enable;
pgm->chip_erase = ft245r_chip_erase;
pgm->cmd = ft245r_cmd;
pgm->cmd_tpi = ft245r_cmd_tpi;
pgm->open = ft245r_open;
pgm->close = ft245r_close;
pgm->read_byte = avr_read_byte_default;
pgm->write_byte = avr_write_byte_default;
/*
* optional functions
*/
pgm->paged_write = ft245r_paged_write;
pgm->paged_load = ft245r_paged_load;
pgm->rdy_led = set_led_rdy;
pgm->err_led = set_led_err;
pgm->pgm_led = set_led_pgm;
pgm->vfy_led = set_led_vfy;
pgm->powerup = ft245r_powerup;
pgm->powerdown = ft245r_powerdown;
handle = NULL;
}
#endif
const char ft245r_desc[] = "FT245R/FT232R Synchronous BitBangMode Programmer";