final-draft
This commit is contained in:
parent
456315a6f5
commit
f133567e76
Binary file not shown.
After Width: | Height: | Size: 749 KiB |
35
index.html
35
index.html
|
@ -115,6 +115,7 @@
|
|||
- Access API
|
||||
- Channel upload playlist
|
||||
- Video statistics
|
||||
- `pandas` dataframe
|
||||
</section>
|
||||
<section data-markdown>
|
||||
### 4. Get YouTube video statistics
|
||||
|
@ -132,8 +133,9 @@
|
|||
```
|
||||
|
||||
</section>
|
||||
<section>
|
||||
<pre><code data-line-numbers="3|5-16|17-18|18-29|30-32"># tubestates/youtube_api.py
|
||||
<section data-markdown>
|
||||
```python [|3|5-16|17-18|20-29|30-32]
|
||||
# tubestates/youtube_api.py
|
||||
|
||||
upload_playlist_ID = channel_data['upload_playlist_ID']
|
||||
|
||||
|
@ -165,7 +167,10 @@ while True:
|
|||
|
||||
df = pd.json_normalize(video_response, 'items')
|
||||
return df
|
||||
</code></pre>
|
||||
</section>
|
||||
<section data-markdown>
|
||||
### Video statistics
|
||||
![](dataframe.png)
|
||||
</section>
|
||||
<section data-markdown>
|
||||
## How does TubeStats work?
|
||||
|
@ -202,7 +207,7 @@ return df
|
|||
</section>
|
||||
<section data-markdown>
|
||||
## 6. Testing
|
||||
```python [|16-20]
|
||||
```python [|15-20]
|
||||
# tests/tests_youtube_api.py
|
||||
from tubestats.youtube_api import create_api, YouTubeAPI
|
||||
from tests.test_settings import set_channel_ID_test_case
|
||||
|
@ -344,8 +349,13 @@ return df
|
|||
</section>
|
||||
<section data-markdown>
|
||||
## Somethings I would like to discuss
|
||||
- DataFrame and memory
|
||||
- Error handling
|
||||
- Async?
|
||||
</section>
|
||||
<section data-markdown>
|
||||
### DataFrame immutability and memory?
|
||||
```python []
|
||||
df = self.df
|
||||
df = df[['snippet.publishedAt',
|
||||
'snippet.title',
|
||||
|
@ -355,16 +365,27 @@ return df
|
|||
|
||||
df = df.fillna(0)
|
||||
|
||||
# changing dtypes
|
||||
df = df.astype({'statistics.viewCount': 'int',
|
||||
...
|
||||
'statistics.commentCount': 'int',})
|
||||
# applying natural log to view count as data is tail heavy
|
||||
df['statistics.viewCount_NLOG'] = df['statistics.viewCount'].apply(lambda x : np.log(x))
|
||||
|
||||
df = df.sort_values(by='snippet.publishedAt_REFORMATED', ascending=True)
|
||||
return DataFrame)
|
||||
</section>
|
||||
<section data-markdown>
|
||||
## What did I learn
|
||||
- Project based learning
|
||||
- 'minimal viable product'
|
||||
</section>
|
||||
<section data-markdown>
|
||||
## Conclusion
|
||||
- Analysing consistency
|
||||
- YouTube Data API --> Heroku
|
||||
- Share your work!
|
||||
</section>
|
||||
<section data-markdown>
|
||||
## Acknowledgements
|
||||
- Menno
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
|
Loading…
Reference in New Issue